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Numerical and experimental study of the dynamics
of axisymmetric slender liquid bridges
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A one-dimensional inviscid slice model has been used to study numerically the
influence of axial microgravity on the breaking ofliquid bridges having a volume close
to that of gravitationless minimum volume stability limit. Equilibrium shapes and
stability limits have been obtained as well as the dependence of the volume of the
two drops formed after breaking on both the length and the volume of the liquid
bridge. The breaking process has also been studied experimentally. Good agreement
has been found between theory and experiment for neutrally buoyant systems.

1. Introduction

A number of recently published papers deal with the floating zone problem through
idealized models in which, generally, phase changes are avoided. The most used model
consists of a liquid bridge, either under gravitationless conditions or subject to a small
axial gravity, held by surface tension forces between two parallel disks with a common
axis (figure 1). Besides the analytical and experimental approaches made on thermal
problems (mainly on Marangoni convection), the liquid bridge problem has received
attention from many investigators: the shapes and static stability of liquid bridges
at rest under gravitationless conditions have been studied by Haynes (1970), Erle,
Gillette & Dyson (1970), Gillette & Dyson (1971), Martinez (1976), Da Riva &
Martinez (1979), Slobozhanin (1982), Martinez (1983), Meseguer (1984), among others.
The influence of microgravity or disks rotation (or both) have been considered by
Coriell & Cordes (1977), Coriell, Hardy & Cordes (1977), Martinez (19784, 5), Boucher
& Evans (1980), Brown & Scriven (1980), Da Riva (1981), Ungar & Brown (1982),
and Vega & Perales (1983) among others. In addition, attempts have been made to
solve some aspects of the dynamics of liquid bridges: the spin-up from rest has been
considered in Da Riva & Meseguer (1978) and Da Riva & Manzano (1981), while the
steady problem of a liquid bridge with disks rotating at different velocities was
examined by Harriot & Brown (1983), and the breaking problem has been treated
by Meseguer (1983a,b), Meseguer, Sanz & Rivas (1983) and Rivas & Meseguer (1984).

In this paper the influence of axial microgravity on the minimum volume stability
limit of non-cylindrical liquid bridges is studied numerically from a dynamic point
of view. The method is used to calculate the static characteristics of the liquid bridge,
such as the equilibrium shapes and the minimum volume stability limit, and overall
dynamiccharacteristics of the breaking process, i.e. the influence of axial microgravity,
the length of the liquid bridge, and the volume of the liquid column on the volume
of the two caps resulting after liquid bridge breaking. Characteristics of the breaking
process are required to evaluate the ability of the slice model to predict the behaviour
of axisymmetric slender liquid bridges. Numerical results shown in Meseguer
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Fieurke 1. Geometry and coordinate system for the liquid bridge problem.

(1983 a, b), Meseguer et al. (1983) and in this paper suggest that the volume of the caps
mainly depends on both the length and the whole volume of the liquid bridge and
not on the initial perturbation of the interface (provided these perturbations are
small enough). Cap volume measurements have been used to compare theory with
experiments.

From the experimental point of view the studies of liquid bridges carried out in
earth-based laboratories are strongly constricted because the maximum stable length
of a liquid bridge is of the order of a few millimetres. Slender liquid bridges can only
be obtained by working on a very small scale, or by simulating microgravity
conditions by using the neutral buoyancy with one liquid surrounded by a second
with which it is immiscible but of precisely the same density. Neutral buoyancy has
been used by Mason (1970), Carruthers & Grasso (1972), Coriell et al. (1977), Rodot,
Bisch & Lasek (1979), Tagg et al. (1980), Bisch, Lasek & Rodot (1982), Elagin
Lebedev & Tsmelev (1982), Sanz (1983), Sanz & Martinez (1983), among others. This
experimental technique is very appropriate for hydrostatic studies. In the case of
dynamic processes the presence of the outer liquid could modify the liquid bridge
behaviour. However, available numerical results concerning non-rotating liquid
bridges (Sanz 1983) show that the influence of the outer liquid on the volume of the
drops resulting after liquid column breaking may be very small.

2. Mathematical model

In the following, unless otherwise stated, all physical quantities are made dimen-
sionless using the characteristic length R, the radius of the disks, and the characteristic
time (pR?/o)}, p being the liquid density and o the surface tension.

To calculate the evolution of the liquid bridge a one-dimensional inviscid slice
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model (similar to the model used by Lee (1974) in capillary jet theory) has been used.
This model can be deduced from the Euler equations by assuming the axial velocity
W to be dependent upon the axial coordinate z and the time ¢ but not upon the radial
coordinate r. This one-dimensional model has been used also by Pimbley (1976) and
Pimbley & Lee (1977) in the study of the breaking of capillary jets; by Cram (1983)
in the study of the formation of droplets in welding processes, and by Meseguer
(1983 a,b), Meseguer et al. (1983), Sanz (1983) and Rivas & Meseguer (1984) in the
analysis of liquid bridge dynamics. Details of numerical integration of the differential
equations set can be found in Meseguer (1983a). In the slice model the radial
momentum equation becomes decoupled, and the following equations of motion
result:

Continuity equation
o8 o
£+—8 =0. (2.1)

Axial momentum equation

oQ 0 (Q"’) oP
o tals)= %

where the reduced pressure P, which accounts for both capillary and hydrostatic
pressures, is given by

P a5 +(2) — 528 a5+ () '+ o "

In these expressions § = F? (where r = F{(z, t) stands for the equation of the interface
shape) and @ = WF? are proportional to the cross-sectional area and the axial
momentum of each slice, respectively. Bo is the static Bond number Bo = pgR?/o
where g is the acceleration due to microgravity. Boundary conditions are:

2.2)

S(x4,)=1, @(£4,t)=0, (2.4)
where A = L/2R is the slenderness. Initial conditions are:
8(z,0) = Fi(z), Q(0,¢) =0, (2.5)

F, being the initial interface shape, which is related to the volume enclosed through

A
V=mn J. Fi(z)dz. (2.6)
-

3. Equilibrium shapes

Equilibrium shapes are calculated in liquid bridge hydrostatics by solving (2.3)
taking the reduced pressure P as constant along the liquid column. Equation (2.3)
with S(+4) = 1 is a two-point boundary problem with the additional complication
that P is unknown and must be chosen to yield the correct liquid bridge volume.
Equation (2.3) is usually solved as an initial-value problem (Coriell et al. 1977;
Martinez 1978a) by guessing values of both P and the edge contact angle at one of
the disks. In general, the values of the slenderness, the edge contact angle at the
opposite disk and the liquid bridge volume obtained from the initial guess will not
be the desired ones, and some iteration procedure must be adopted. In this paper we
have tried a dynamic method to calculate liquid bridge equilibrium shapes in which
boundary conditions at the disks are automatically met, and physical variables such
as the slenderness and the volume are the problem input.
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Fiaure 2. Equilibrium interface shapes of liquid bridges with a slenderness A = 2.6. The interface
shapes in (@) correspond to liquid bridges with the same volume ¥ = 12.9 subject to different Bond
numbers, whereas those of (b) correspond to liquid bridges having different volumes subjected to
the same Bond number Bo = 0.005. Numbers on the curves indicate the value of the Bond number
in (a) and the volume in (b).

The basic idea may be explained in a few words: the slice model allows us to
calculate the oscillatory motion around some equilibrium shape, provided the initial
configuration lies in the stable region, so if some appropriate dissipative effect is
introduced into the model the oscillation will be damped, and the process will tend
to the equilibrium shape. To define the initial configuration the following expression
for the interface shape has been taken:

V nZ A4

Sy(2) = 1+ (m— 1) (1 + cos 7) +2Bo (z—sin 1

and, to estimate the accuracy in calculating the equilibrium interface shapes, a

parameter giving the maximum pressure difference along the liquid bridge has been
introduced

sin z) , (3.1)

AP = (Pmax_Pmin)/Pmax' (3.2)

Let us assume that once the volume, the Bond number and the slenderness, and thence
the interface shape as given by (3.1), are fixed, the evolution of the liquid bridge is
calculated by using the slice model. The difference between capillary and hydrostatic
(if it exists) pressure gradients generates a velocity field, and the liquid flows from
the high- to the low-pressure regions. The interface shape changes, tending to smooth
out the pressure distribution; since the liquid is assumed to be inviscid, when the
configuration is close to equilibrium, the existing kinetic energy causes this position
to be overpassed and the liquid bridge interface distorts in such a way that pressure
gradients arise, tending to brake the movement. In consequence, if the initial
configuration is stable, the liquid bridge will oscillate around some equilibrium
interface shape. According to these considerations, the kinetic energy will be a
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maximum when AP is a minimum; therefore, if at that moment the velocity field
is cancelled, the resulting configuration will have less energy than the initial one, AP
being closer to zero than at the starting time. Taking this last interface shape as the
initial one of a new run, a third interface shape even closer to the equilibrium one
will result, and so on. Calculations have been stopped when AP becomes smaller than
a prefixed value which ranges from 0.005 at 4 = 2.0 to 0.001 at A4 = 3.0. Some of
the calculated interface equilibrium shapes are shown in figure 2.

4, Stability limits and breaking process

The evolution of axisymmetric liquid bridges subject to a small axial gravity has
been numerically studied for three values of the Bond number, Bo = 0.01, 0.005 and
0.002 (calculations have been performed on a Hewlett—Packard 9836 desktop
computer using HP-PASCAL language).

Stability limits have been calculated as follows. Assume a liquid bridge having
slenderness A and volume V in equilibrium under a Bond number B:i. Such a
configuration, which is stable, is perturbed by increasing the Bond number from the
initial value Bi to a new value Bo > Bi. If the perturbation Bo— B is large enough
the liquid bridge will break in two drops. The evolution of the liquid bridge interface
is calculated by using the slice model, and the breaking time £, (the time spent by
the liquid bridge to reduce the neck radius from its initial value to zero) and the
partial volume v, (the larger drop volume to the whole liquid bridge volume ratio)
are obtained.t The breaking time increases as the volume of the liquid bridge grows,
as shown in figures 4 and 5, and becomes infinite at the critical value ¥V, (4, Bt, Bo).
For V > V,, no breaking occurs: the liquid bridge under gravity given by Bo is stable
for the initial condition B7 and the perturbationimposed (represented by Bo— Bi) and,
thence, ¥, is just the minimum-volume stability limit for the assumed values of 4,
Bi and Bo.

We discuss now the case A = 2.8 for which a large number of initial conditions have
been considered. The results to be analysed are shown in the lower plot of figure 4
(the results obtained for 4 = 3.0, 2.3, 2.15 and 2.0 are plotted in figure 5). In figure 4,
for each value of Bo, V_,(A4, Bi, Bo) decreases as Bi increases. The static minimum
volume stability limit would be obtained by considering values of Bi as close as
possible to the value of Bo, formally when Bi = Bo, which is numerically unattainable.
To avoid this problem static stability limits have been calculated by extrapolation. In
figure 6 the difference in volume V,,(2.6, Bi, Bo)— V,_,(2.6, 0, Bo) at two stability limits
only distinguished by their initial conditions has been represented for three values
of Bo. Two main aspects may be noted from figure 6: first that V (A4, Bi, Bo) varies
almost linearly with Bi; and secondly that, for a given slenderness, the influence of
initial conditions is the same no matter what the value of Bo is. In consequence, for
other values of the slenderness it will be enough to determine this initial-conditions
calibration curve, here performed by calculating at least three points of the curve
(for example V_(4,0,0.01), V,(A4,0.005,0.01) and V,(A,0.008,0.01)), and one

T In the breaking process calculations are stopped when the neck radius becomes smaller than
0.1 because of numerical instabilities (spatial and time derivatives of both S and @ become very
large in the neck region). At this point both the breaking time ¢, and the partial volume v, are
well defined. In effect, as shown in figure 3 for a typical liquid bridge configuration, neck radius
varies with time in such a way that when the stopping point is reached its slope is almost infinite.
The slope of the curve giving the time variation of the volume of liquid enclosed between one of

the disks and the neck bridge vanishes under the same condition and the value of v, is clearly defined
also.
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F1oURE 3. Variation with time ¢ of neck radius F,;, and partial volume v, of a typical liquid bridge
configuration (4 = 2.6, V = 11.9, Bi = 0, Bo = 0.002). In this plot partial volume is defined as the
larger fraction of the liquid bridge volume enclosed between the neck and one of the disks. The
symbols indicate the interface shape as sketched in the insert.

representative point for the other two values of Bo (i.e. V,(4,0,0.002) and
V(4,0,0.005)).

The partial volume v, increases with liquid bridge volume V, but the rate of growth
remains finite and even becomes smaller as ¥ increases, in such a way that for a liquid
bridge at the static stability limit (whose volume is V,,(4, Bo, Bo)) the partial volume
is clearly defined. In table 1 the minimum volume stability limits and the partial
volume at stability limits, resulting from figures 4 and 5, are summarized. In table 2
the static minimum volume stability limits are presented, these values being
obtained by the extrapolation method explained above.

The influence of Bond number on the static minimum volume stability limits and
the dependence on Bond number of the partial volume at these limits have been
represented in figures 7 and 8, respectively. Liquid bridges become more sensitive to
Bond number as A increases. To be able to produce a bridge with Bond numbers Bo
from 0 t0 0.01 the liquid bridge volume needs to be increased by over 3% at 4 = 2.15,
whereas the increase must be of 16 % at 4 = 3.0. Concerning v,,, the results are in
accordance with those expected from experimental evidence. The volume of the larger
drop resulting after breaking increases with the Bond number.

Additional conclusions concerning partial volume can be deduced from figures 4
and 5. These results corroborate the previous ones (Meseguer 1983a,b; Meseguer et
al. 1983): v, seems to be an intrinsic feature of liquid bridge breaking, depending
mainly on both the slenderness of the bridge and on the volume of liquid enclosed,
but not on the initial condition and breaking perturbation (B: and Bo— Bi,
respectively). This dependence is represented in figure 9, as the partial volume as a
function of the liquid bridge volume for several values of A4, which has been plotted
from data presented in figures 7 and 8 (in figure 9, due to scale constraints, V,/e4
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FioURE 4. Partial volume v, and breaking time ¢, versus the volume V of liquid bridges with a
slenderness A = 2.6. The symbols correspond to the cases numerically solved and indicate the values
of initial conditions and breaking perturbations as in table 1.

has been plotted instead of V). According to this numerical analysis, if Bo is small
enough, v, depends mainly on easily controlled experimental variables such as the
slenderness and the volume of the liquid bridge. This simplifies the method of
correlating experimental and numerical results, and helps to validate the slice model
for predicting the dynamic behaviour of liquid bridges.

Static results from this study are compared with those obtained by other
investigators. The stability limit of cylindrical liquid bridges subject to axial
microgravity has been studied in Meseguer (1983b), where the results from Carruthers
& Grasso (1972), Coriell et al. (1977) and Vega & Perales (1983) are analysed. Some
of these results (the variation with Bo of the maximum stable slenderness of
cylindrical volume liquid bridges) are presented in table 3. As can be observed, the
results obtained in Meseguer (1983b) give maximum stable slenderness below the
values reported here. The difference arises because the previous results were
calculated assuming that the liquid column was a cylinder at the initial time, which
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Figure 5. Partial volume v, and breaking time t, versus the volume V of liquid bridges with
slenderness A4 = 3.0, 2.3, 2.15 and 2.0, respectively. The symbols correspond to the cases numerically
solved and indicate the values of initial conditions and breaking perturbations as in table 1.

is the equilibrium shape corresponding to B¢ = 0. Since the breaking perturbation
increases with Bo, lower values of the maximum stable slenderness should be
obtained, as shown here. The numerical results given in this paper agree with those
of Coriell et al. (1977). Futhermore, an upper limit (Bo = 0.005) for the applicability
of the results obtained by Vega & Perales (1983) through a perturbation analysis can
also be established.
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F1auRE 6. Variation of minimum volume stability limit V,,(2.6, Bi, Bo)— V,,(2.6,0, Bo) with initial
conditions Bi for liquid bridges with a slenderness 4 = 2.6. The symbols indicate the values of Bond
number Bo: A, 0.01; [J, 0.005; O, 0.002.

4=3.0 4=286 4=23 4=215 4=20

Bo Bi SB ¥, vp Vi 7y Vn vp Ve vp Vn vp
0.002 0001 @ — — 1227 07148 — — — — — —
0.002 0 O 1840 0850 12.31 0.750 9277 0.645 8.116 0.583 7.136 0.531
0005 0004 W — — 12.61 0.769 — — — —_ — -
0.005 0.002 o — — 12,69 0774 — — — — — —_
0.005 O O 1951 0.872 12.77 0.778 9.460 0.681 8.215 0.621 7.171 0.564
0.010 0.009 A — — 13.08 0.793 — — — — — —
0.010 0.008 < 20.25 0.883 13.11 0.796 9.594 0.699 8296 0.646 — —_
0010 0005 A 2054 0.887 13.22 0.801 9.648 0.706 8.320 0.651 — —
0010 0.002 [ — — 13.34 0806 — —_ — — — —
0010 0 A 21.03 0894 1341 0810 9.735 0.716 8.367 0.859 7.245 0.602

Bo, Bond number at breaking; Bi, Bond number used to calculate the initial-conditions
equilibrium interface shapes; SB, symbols indicating the values of both Bo and Bi in figures 4
and 5; 4, slenderness; V,,, minimum volume stability limit (made dimensionless with R?) for the
corresponding values of Bo and Bi; v, partial volume (defined as the ratio of the main drop volume
to the whole liquid bridge volume) at the minimum volume stability limit.

TaBLE 1

5. Apparatus

Experiments have been carried out in a Plateau tank (PT) already described in
Martinez & Rivas (1982) which simulates the Fluid Physics Module (FPM) of the
European Space Agency. A dimethyl silicone oil (Rhodorsil 47 V 20) with viscosity
20 times that of water and density p = 9541+ 0.5 kg m™ has been used as working
liquid and a mixture of methanol and distilled water as the surrounding liquid. To
improve interface visibility the dimethyl silicone oil was dyed slightly with yellow
aniline.

4 FLM 153
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Bo = 0% Bo = 0.002 Bo = 0.005 Bo =0.010
A Vea vp Vea vp Ve vp Vi vy
3.0 17.25 0.819 18.21 0.846 19.02 0.865 20.06 0.879
2.6 11.86 0.708 12.23 0.743 12.58 0.768 13.03 0.793
2.3 9.099  0.588 9.242  0.636 9372  0.685 9.560  0.697
2.15 8.039 0512 8.098  0.577 8.170  0.613 8.276  0.645
2.0 7.127  0.500 7.133  0.535 7.156  0.565 7.208  0.600

Bo, Bond number; 4, slenderness; ¥, static minimum volume stability limit (made dimensionless
with R?); v, partial volume (defined as the ratio of the main drop volume to the whole liquid bridge
volume) at the minimum volume stability limit. 1 In the case Bo = 0 the quoted values of ¥, are
from Martinez (1983) and that for v, are from Meseguer ef al. (1983).

TABLE 2
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Fieure 7. Static minimum volume stability limit V,, versus slenderness 4 for several values of the
Bond number Bo. The dashed line corresponds to liquid bridge configurations having cylindrical
volume V = 2rnA4. The symbols represent experimental results (volume of the liquid bridge at
breaking) and indicate the value of the Bond number at breaking: V7, |Bo| <0.005; A,

| Bo| > 0.005.
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F1oURE 8. Partial volume at the minimum volume stability limit v, versus slenderness A for several
values of the Bond number Bo. The white symbols represent experimental results and indicate the
value of the Bond number at breaking: ¥/, | Bo| € 0.005; A, |Bo|> 0.005; whereas the black
symbols indicate the theoretical values of v, corresponding to the different experimental liquid
bridge configurations.

The tank, figure 10, is 140 x 140 x 60 mm, with the sides made of 2 mm thick glass
and the bottom of 10 mm thick Perspex. A removable plastic sheet minimizes meth-
anol evaporation. The upper disk (the feeding disk), has two movements — rotation
and axial displacement, and the bottom disk has three, namely, rotation, axial
vibration and lateral displacement. Both disks are made of Perspex, in the shape of
a frustrum cone, 15 mm radius, to provide sharp edges. The injection and removal
of working fluid occurs through a 4 mm diameter hole in the centre of the upper disk.
The working surface of the bottom disk is flat, whereas the working surface of the
feeding disk presents a slight conicity to facilitate the evacuation through the
injection hole of air bubbles trapped in the liquid bridge. Working-fluid injection and
removal is made with a calibrated syringe, with the piston driven by a variable-speed
electric motor. Liquid displaced by the piston passes through the filling duct, to which
a three-way valve with a purge duct is connected. The purge duct is placed so as
to trap air bubbles coming from the upper disk. The error in volume introduced by
these air bubbles can be compensated for by measuring the change in height in the
purge duct. The system was calibrated by using a burette with a precision of
+0.2 cm3, which can be taken as the precision of volume measurements.

42
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Fiaure 9. Partial volume v, versus the static minimum volume stability limit V,,. The symbols
correspond to the values obtained from the numerical analysis performed. Numbers on the curves
indicate the values of the slenderness A (continuous lines) and the Bond number Bo (dashed lines).

ACI‘

Bo a b ¢ d e
0.002 3.14 3.06 3.08 3.05 3.05
0.005 3.13 2.98 3.00 2.97 2.99
0.010 3.13 2.89 2.92 2.88 2.92

Bo, Bond number; A4.., maximum stable slenderness of cylindrical volume liquid bridges for the
corresponding Bond number. The values quoted are from (a) Carruthers & Grasso (1972); (b) Vega
& Perales (1983); (c) Coriell et al. (1977); (d) Meseguer (1983b) and (e) calculated in this paper.

TABLE 3

The PT was not thermostated, but the temperature of the surrounding liquid was
continuously measured using a thermometer with a precision of +0.1 °C. A magnetic
stirrer at one side of the tank helped to keep uniform the temperature and aleohol
composition. Background illumination consisted of a 60 W blue glass lamp with a
10 mm water filter 20 cm behind the rear glass of the tank. Very close to the rear
face of the tank a translucent grid provided diffuse illumination and a reference frame
for interface shape measurements (see figure 11). A photo-camera and a video-camera,
70 cm away, were used for image recording. A digital clock display was placed on
the video-camera-viewed background for registration of the elapsed time.
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Fieure 10. Experimerital arrangement: (a) light source, (b) water filter, (c) translucent grid, (d)
thermometer, (e) tank, (f) magnetio stirrer, (g) liquid bridge, (k) filling and purge system (t) image
recording systems.

5.1. Time variation of Bond number

In PT experiments the Bond number is defined as Bo = ApgR?/a, where Ap is the
difference between the liquid densities, g is the acceleration due to gravity, R the
radius of the disks and o the interfacial surface tension. Under these conditions
density matching must be very accurate to obtain very small Bo values.

Methanolevaporation could not be completely avoided, and therefore an experiment
was designed to measure the time variation of Bo. The same liquid bridge was used
as a density indicator. In effect, to a first approximation, the equilibrium interface
shape of a cylindrical liquid bridge subject to the action of an axial microgravity is
(Meseguer 19835)

A .
F(z) = 1+Bo(z—sinA 81n2>, (5.1)

the maximum and the minimum liquid bridge radii, £, ,, and F_,;, being reached

at 2, = % cos™! ([sin A]/A). In consequence, the Bond number is related to the liquid
bridge deformation through
— 1_F max F, min
Bo = 5 - . (5.2)
m T Sing o om

It is assumed that Bo is positive (Bo > 0) when the liquid bridge is inside another
liquid with an excess of methanol (the liquid bridge density is greater than the
surrounding liquid density and the interface shape distorts, bulging out near the
bottom disk and necking in at the upper), and negative (Bo < 0) when, due to
methanol evaporation, the surrounding liquid density becomes greater than that of
the liquid bridge (the interface shape is in opposition to that described above).
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Ficure 11. Photographs of liquid bridges, with slendernesses 2.0 and 3.0 respectively, before
and after breaking, showing the magnifying-glass effect of the liquid column.
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Figure 12. Variation of Bond number Bo with dimensional time ¢. The symbols indicate the
slenderness of the liquid bridge and the interval of temperatures during experiments: Q, 2.77,
23.7-24.1 °C; O, 2.77, 27.0-27.3 °C; A, 3.0, 26.6-26.7 °C.

.Three calibration tests using cylindrical volume liquid bridges were performed, two
of them at 4 = 2.77 and the third at 4 = 3.0. From time to time photographs of the
liquid bridge interface were taken. F,, and F,;, were measured from these pictures
and Bo calculated from (5.2). The results obtained are plotted in figure 12. There is
an almost linear dependence of Bond number with time, the rate of change being
dBo/d¢ = —1.53 x 1073 min!, ¢ being the dimensional time. A detailed study of this
phenomenon can be found in Sanz (1983).

6. Experimental technique and results

At the beginning of all the experiments the surrounding liquid had methanol in
excess, its density being slightly smaller than the liquid bridge density, aiming to
provide a positive Bo (see figure 12) so that Bo was close to zero at the breaking time.

After density matching using a longer cylindrical column the desired slenderness
and volume were fixed. The slenderness was reduced to the prefixed value, and some
liquid was sucked from the bridge to maintain the cylindrical volume. Once A had
been obtained, the liquid suction continued in two stages. Slow but continuous
withdrawal of fluid brought the liquid bridge to the vicinity of the theoretical limit
of minimum volume for Bo = 0.01 (obviously, this first stage is suppressed in the
breaking at 4 = 3.0, see figure 7). Then very slow withdrawal occurred in steps of
0.5 cm?, with settling in between each step to allow for interface instabilities, if any,
to develop. Suction in this last stage must be performed at very low speeds to avoid
significant velocity fields in the liquid bridge and to get breaking processes with initial
conditions as close as possible to those stated in §2, the suction rate being smaller
as A decreases.
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A, A, Box10®  Boyx10*  ¢y—¢,[min]  V+0.06 v, T,T,°C
277 20 14 -2 10.5 7.20  0.589  23.5,23.8
277 21 14 —4 12.0 785 0573  23.9,243
277 22 10 —10 13.0 852 0635 273,274
277 23 10 2 5.0 9.23 0642  25.6,25.7
277 24 13 —10 15.3 1023 0672 235,240
277 25 10 1 5.6 1093 0680  23.7,23.8
277 26 22 -5 17.6 12.01 0728  26.3,26.8
30 27 6 —4 6.8 13.11 0.752  25.7,25.8
30 28 1 -8 5.9 14.81 0.801  27.0,27.2
30 29 -1 -6 3.0 16.20 0828  27.3,275
31 30 2 -2 2.7 1773 0837  26.1,26.2

A, slenderness; Bo, Bond number; ¢, dimensional time; V, volume of the liquid bridge at breaking
(made dimensionless with R?®); v, partial volume, defined as the ratio of the main drop volume
to the whole liquid bridge volume; 4, dimensional temperature. The subscripts i and b refer to
starting time (density matching) and to breaking time respectively.

TaABLE 4

In each run photographs were taken after the density matching, after every volume
change step, and after the breakage takes place, the video-camera being used for
recording the stepped withdrawal and the subsequent breaking process. The volume
of the drops was calculated by numerical integration of the drop interface shapes from
the pictures. To determine the interface shapes the grid placed at the rear face of
the PT provided an accurate reference frame: pictures were enlarged and the diameter
of the drops at each horizontal grid line as well as the distance between two reference
vertical grid lines were measured. Then, taking into account both scale and conicity
effects, the real diameters were calculated and from these last values the volume of
the drops was obtained.

The experimental results are shown in table 4. For every experiment, the initial
Bond number Bo, refers to that determined from the density-matching picture (the
zero time being reset at the instant that photograph was taken), and is calculated
as explained in §5.1. The Bond number at breaking Bo,, is calculated from Bo, and
the measured time elapsed until the liquid bridge reaches its minimum volume
stability limit, just before the breaking process accelerates, assuming the variation
of Bond number with time to behave as in figure 12.

The control of Bond number seems to be the weak link in this set of experiments.
In several experiments a bias has been introduced because of an optimistic estimation
of the smallness of Bond number (and maybe because of a wrong estimation of the
liquid bridge evolution rate, probably caused by the slowness of the beginning of the
breaking process). Therefore, in some cases the liquid bridge volume has been
excessively reduced. When, afterwards, Bo is calculated it is found that the liquid
bridge has been forced to break with a volume less than that for the corresponding
static minimum volume stability limit, as shown in figure 7, where experimental
results giving the liquid bridge volume at breaking as a function of 4 are shown.

In figure 8 the experimental partial volumes v, are plotted against A. Experimental
and numerical results agree in the sense that v, increases with A, although the
influence on Bond number is not clearly indicated by experimental results for the
reasons already stated: most of the experimental results correspond to liquid bridge
configurations below the stability limit. In spite of this, since v, is almost independent
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of Bo (see figures 4 and 5), it is possible to calculate from figure 9 the partial volumes
corresponding to experimental configurations. These numerical results are also
plotted in figure 8. Although experimental values of the liquid bridge volume are given
with an error of +0.06 (in dimensionless variables) which is constant for the whole
range, the error in numerical partial volume increases as A decreases, as shown in
figure 9. Numerical and experimental results are in agreement, except on a couple
of points. The concordance is encouraging because, according to these experiments,
the one-dimensional inviscid slice model accurately predicts the behaviour of
axisymmetric liquid bridges, at least with respect to the aspects of the breaking
problem treated in this paper.

7. Conclusions

The influence of the Bond number on the static minimum volume stability limit
has been studied from a dynamic point of view by using a one-dimensional inviscid
slice model. Additionally, this slice model has been used to calculate stable liquid
bridge equilibrium shapes, providing a method of calculation in which the input
variables are ones the experimentalist may easily control. These are the slenderness
and the liquid bridge volume.

The influence of the slenderness, the volume, and the Bond number on the volume
of the drops resulting after the liquid bridge breaking has been analysed. Numerical
results show that partial volume depends mainly on the slenderness and on the whole
of the liquid bridge, but not on the breaking perturbation. On the other hand,
experimental results indicate that the one-dimensional slice model is very suitable
for predicting the behaviour of axisymmetric slender liquid bridges, in spite of the
simplifying hypotheses introduced in the theoretical model (the axial velocity is
assumed to be constant over each slice and the radial momentum equation is not
considered).

To conclude, it should be remembered that calculations are stopped before the neck
radius vanished; in the subsequent evolution the liquid bridge splits in two drops
(leaving apart satellite droplets) which remain anchored to the disks. This last part of
the evolution has not been studied here, although some attempts in connection with
this subject can be found in the literature. For instance, the work of Keller & Miksis
(1983) could be a guide for study of the smoothing of the sharp apices appearing on
the drops just after breakage. An estimation of the influence of microgravity on the
final shape of these drops (which are spherical caps in the case Bo = 0) can be found
in Chesters (1977).

This work has been supported by the Spanish National Commission for Space
Research (CONIE) under a contract with the Polytechnic University of Madrid
(UPM).
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